Chapter 1
A Parallel Implemetation of Multilevel Recursive Spectral
Bisection for Application to Adaptive Unstructured Meshes

Stephen T. Barnard™ Horst Simon'

Abstract

The design of a parallel implementation of multilevel recursive spectral bisection
is described. The goal is to implement a code that is fast enough to enable dynamic
repartitioning of adaptive meshes.

1 Background

The Recursive Spectral Bisection (RSB) algorithm is one of a class of recursive bisection
methods for partitioning unstructured problems '4]. RSB is typically used as a preprocass-
ing step prior to running a vastructured-mesh simulation on a massively parallel computer.
Applications that change the mesh adaptively throughout the simujation, however, require
a fast method to repartition “on the fly.”

Finding a partition that both balances the work of all processors and minimizes
interprocessor communication is an NP-hard problem. Therefore, all practical partitioning
algorithms are necessarily heuristic approximations. Among these. RSB empirically
provides the best partitions for a large set of problems, albeit at somewhat more run
time than mos: other methods. RSB bisects a graph by first finding the eigenvector {the
Fiedler vector) corresponding to the smallest non-trivial eigenvalue of the Laplacian matrix
of a graph. The graph could represent, for example, the connectivity berween elements in a
finite-element mesh, or the connectivity between volumes in an unstructured finite-volume
mesh. The vertices of the graph are reordered with the permutation induced by sorting the
components of the Fiedler vector, and the graph is cut in half, with those vertices in the
lower half of the new ordering in one part, and the remaining vertices in the other part.

The most straightforward implementation of RSB, which uses the Lanczos algorithm to
find the Fiedler vectors, is unacceptably slow for many applications. Multilevel recursive
spectral bisection (MRSB) 1] is a refinement of the algorithm that is much faster, typically
by an order of magnitude or more, and has been instrumental in the acceptance of RSB.
The basic idea behind MRSB is to speed up the Fiedler-vector computation by constructing
a series of successively smaller contracted graphs that maintain the global structure of the
original graph. The Fiedler vector of the smallest graph is found quickly with the Lanczos
algorithm. That result is interpolated to the next larger graph to form an approximate
Fiedler vector, which is then refined with Rayleigh Quotient [teration using the SYMMLQ
algorithm. This process is repeated until the Fiedler vector of the original graph is obtained.

*Cray Research Inc., NASA Ames Research Center, Moffett Field, CA 94035 )
!Computer Sciences Corp., NASA Ames Research Center, Moffett Field, CA 94035 (‘MWNQ uos, |, woso .bb\/

1



2 BARNARD AND SIMON

/* Partition matrix M into n parts. Assume n is a power of 2. */
void partition(struct matrix *M, int n)
{ struct matrix *MO,*M1;

2 (a> 1) {

bisect(M); /* set mask to {0,1} =/

M0 = copy_.submatrix(M,0); /% partition ¥ =*/

M1 = copy_submatrix(M,1);

partition(M0,2/2); /* partition each submatrix */
partition(Mi,n/2);

remap(MO,M1,n/2, M); /* Temap processor assignments =/
free_matrix(M0); /* free the submatricas =/
free_matrix(M1);

It

F1G. 1. partition.

2 A Parallei Design for MRSB

The MRSB algorithm is naturally recursive in two ways. First of ail ':t is a recursive
bisection method; and ;econd.y, at a lower level g;ﬁy’be control structure. it uses a recursive
muitilevel technique to find Fiedler vectors, and hence :o determine sach bisection. These
two quite different uses of recursion present different challenges (and opportuaitiss) for
parallel implementation.

2.1 Recursive Bisection
Recursive-hisection partitioning Talgor;thms have the structure ilu
the C code in Figure 1. The pa=tition routine takes as ifs ingut
assigns rows of X[ to n processors. The bisect routine simely assigns -ow:
the set {0, 1}, while the remap routine promortes procassor assignments for The sudbmairicss
1o processor iss;gnments for the pa.rent matrix. As it stands, cerzicicn werks for any
bisection algorithm. E

An efficient way to implement partition on a distributed-memory MIMD parallel
computer is ilustrated in Figure 2. Initially, 2 “task-team” of processors is formed, 2ach cf
which holds some number of rows of the matrix. All processors participate in determining
the first bisection, then they split into two smaller task-teams. These task teams are
responsible for partitioning the two submatrices determined by the first bisection after the
appropriate data has been copied. Recursive splitting proceeds down to task teams of single
processors. Task teams are asynchronous: after a task team is split its two caildren can
execute independently because all barriers and other global operations are restricted to a
particular task team.

2.2 Recursive Multilevel Fiedler-Vector Computation

MRSB bisects by sorting the Fiedler vector, which is computed recursively as illustrated by
the C code in Figure 3. If the matrix is small the Fiedler vector is found with the Lanczos
algorithm; otherwise, the matrix is contracted, the Fiedler vector of the smaller matrix is
found recursively, the result is interpolated to the original matrix and improved with the
Rayleigh Quotient Tteration algorithm. Uunlike partition, the recursive computation of
fiedler occurs over a single task team, as shown in Figure 4.




SIAM PROCEEDINGS SERIES MACRCS

Lines represent
communication patternm.

FiG. 2. MIMD Recursive Bisection with Asyncaronous Task Teams

/% Find the Fiedler vector of the sparse Laplacian matrix ¥ «/
void fiedler(struct matrix *M)
{ struct matrix =M_c; -

if (M->reqas <= min_neqns) { /* M is small encugh */

lanczos(M); /* use Lanczos */
else /* M is. too big =/
Y_c = contract(M); /* contract matrix M =/
fiedler(M_c); /* find the Fiedler veczor =/
interpolata(M.c,¥); /* interpolata to ¥ =/
rqi(¥); /* refine estimata with RQI =*/
be

F1G. 3. Find Fiedler Vector,

e At e, s e

(]




et e o e AR [ — TR _
s N - - e+ e e o e e A s - e

4 BARNARD AND SiMON

] RQI/SYTMMIQ

Contraction

| RQI/SYMMIQ

Interpclaticn

@
wm..
E&r

Lanczos

F16. 4. Recurswve Multileve! Fiedler Compuiaiion

“We now axamine the feasibility of implementing a parallel version of 2ach sten of this
procedurs:
o The contraction step builds a smaller graph by selecting a maximal indeperdent set
{ vertices and then connecting them with a breadth-first search through ke original
4. {Two vertices in the maximal independent set are connectea in the contracred
h'if*and only if there is a shortest path iu the original Zraph that does ot conzain
tex in the maximal independent set.)

72

oy

4
g
U '

»

QY

(O
1
ct

- Luaby [2{ has shown how to find a maximal independent ser aficientiy in parallel
{Finding a maximal independent set was for a time thcughi to ne difficulr 0 o

in parallei. aithough the “greedy” serial algorithm is trivial.)
by 2 < K D /

— The breadth-first search (to connect members of the maximal indeperdent ser)
can be implemented with independent processes for every vertex, simpiy using
a low-level “add-half-edge” routine that adds a single off-diagonal eatrv :o the
Laplacian matrix. The basic idea is to grow neighborhoods from each member of
the maximal independent set, adding “haif edges” when aeighborhoods intersect,
and terminating when all vertices have been expanded.

» The interpolation step (a simple prolongation operator) is easy, especially on a shared
memory system.

s RQI (Rayleigh Quotient Iteration) is easy to implement in parailel because it oaly
depends on BLAS1 and BLAS? operations.

¢ The Lanczos algorithm is more difficuit, though not impossitle, to parallelize, but this
step requires only a very swmall amount of work because the final contracted graph
is tiny. Mapping the Lanczos computation to one processor is a workable (if ugly)
solution. Another possibiity we intend to investigate is to use Davidson’s method,
whick iz 2asily parailelized. : :




STAM PROCEEDINGS SERIES MACROS 3

2.3 Other implementation issues.

The new C implementation of MRSB takes an object-oriented approach. The code is
greatly simplified by using a C structure to encapsulate the data structures necessary
for representing a graph and its associated Laplacian matrix. The client supplies the
initial graph and optionally an array of vertex weights, then MRSB finds a mapping {rom
vertices to processors, using a number of internal buffers not of interest to the client. The
adjacency structures are represented as linked lists, which provide an efficient and Jexible
data structure for managing the unbounded and somewhat unpredictable requirements of
the contraction operation.

There are two additional operations that must be parallelized that we haven't discussed:
sorting and finding connected components. Several parallel algorithms are possible. In any
case, these operations require such a small proportion of the total work that efficiency is
not a serious concerm.

2.4 Shared Memory vs. Message Passing Implementations
Unlike structured-grid codes. unstructured VPP applications must support highly irregular

gri

patterns of communication. Every processor hoids pointers not onlv to local data. but aiso
to data on a variable aumber of neighboring processors. The essential problem is how
to dersference these remote pointers efficientiy. with no redundant communication. On
shared-memory system such as the T3D chis is scarcely more difficuit shan dereferencing
pointers to local data: f 3 reference is remote the data is merely read from the remota
memory, with no need for the processor that “owns” the data to do anything. A message-
passing a.rchitectur,e,' however, requires an elaborate preprocessing step to set up dzta
structures that can bé used for remote scatier gather operations.

Sparse matrix-vecior multiplication illustrates this problem. A reasonably sfficient
shasad-memory version is only slightly more complex than a serial version. The only way
o write a sparse matrix-vector multiply of roughly the same code complexity on a message-
passing system, however, requires giobal reduczions of complexity O(nlogm), where n is
the number of rows and m is the number of processors. This leads to poor scaling as shown
in Figure 5. To be sure, this is not the most efficient way to do matrix-vector multiplication
with message-passing: the point is that the only simple way is poor.

We have implemented a “logarithmically parallel” version of MRSB. Suppose we have
n processors, where n is a power of two and the processors are numbered {0,1,...n — 17.
First copy the graph to all processors. The first bisection is computed by processor 0 using
the serial multilevel code. The results of this bisection are sent to processor n/2, and then
processor 0 and processor n/2 compute the bisections of the two new subgraphs. This is
repeated recursively until the graph is fully partitioned.

" This simple method is inefficient because the the computation of the first bisection
involves only one processor, the next bisection involves only two, and so om. Nevertheless,
the results are encouraging. The table shows the run times in seconds to partition a
graph with 15606 vertices and 45878 edges into 4 parts (npart) and 128 parts. The
«\fultilevel Serial” times were obtained on a Silicon Graphics Indigo 2 workstation, the
“\[uitilevel T3D" times were obtained on a Cray T3D using the logarithmically parallel
method described above, and the “RSB CMS” time was obtained on a 128-vector-unit CM5
using the CMSSL routine (parallel single-level RSB). '

The multilevel algorithm on a single workstation outperforms the 128-processor CMS,
demonstrating the effectiveness of the multilevel approach. The processors of the T3D



) BARNARD AND SIMON

sraducts/sec Sparse Matriz-VeczZor Multiplication
L2590
Shared Memory
(RSB Qrdering)
10004
—"J
750 4 .
Shared Memory
- {Lexzcal Oxderizg)
390 4
—— 4
150 4 Message ?assia
ria Glotal Reduction
Y i 4 1 i
3 20 40 80 3aQ

Jwnoer cf 2X0CESSOCS

Fi1G. 5. Performance of Matriz-Vactor Multipiication

TasLe 1
RSB Partitioning Run Times ™

<«

Lultilevel Serial | Multilevel T3D | RSB CM5 |
2| 3.8 (4 processors) | | :
| .

3.0 {128 processors) |

| 1281

14.4

ot
oo

have aporoximately the same performance as zhe [ncigo 2 processor (130 MHz), so the 4-
procassor 13D is anly slightly faster. Computin hig':e: order partiticnings on the T3D is
neariv {rae. however. because the paraillelism rapidly d2comes more efective as the number

of partitions increases.

3 Conclusions

An efficient parallel implementation of MRSB to support repartitioning adaptive meshes
is feasible. Recursive bisection in general can be implemented with recursive asynchronous
task teams. Coding the recursive multilevel technique for finding Fiedler vectors, including
the difficult contraction operation, is facilitated bv the shared-memory architecture of
the T3D. Preliminary testing suggests a substantial improvement in speed over currently
available serial and parallel spectral partitioners.

References

(1] S. Barnard and H. Simon, Fast multilevel implementation of recursive spectral bisection for
partz't:’onz‘ng unsiructured prodlems, Concurrency: Practice and Experience, Vol. §, No. 2, 101-
7(1994). - - i
(2] \/I Luby, A simple parallel aIgonihm for the 'na:rmal independent set problem SIAM
Comput., Vol. 15, No. 4, November 1986:- '
(3] H. Simon, Pamt:omnq unsimctured problems for parailel processing, Comput. Syst. Eag.,
2(2/3), 135-148 (1991) .




